この公式こそが、バフェットの真の秘密!



ケリー公式を活用し、長期複利マシンを構築せよ。
1、複利は資産増加の根本的な原動力だが、現実世界は変動と不確実性に満ちている。
2、ケリー公式の本質は、不確実な世界の中で資金配分を最適化し、長期的な最大化を図ることにある。
3、「強化版ケリー戦略」は、バフェット成功の数学的基盤であり、特殊なビジネスモデルによりより高効率・低リスクのバランスを実現している。
4、「反ケリー公式」の操作は、多くの投資失敗事例の原因である。
5、ケリー公式はギャンブラーには無効だ。なぜならギャンブルは負期待値ゲームであり、最適戦略は参加しないことだからだ。
6、最も重要な投資原則:ギャンブルを避け、過度なレバレッジを控え、永続的な資本損失を受けないこと。

一:市場が大きく下落し始めると、人々は再び「やはりバフェットの姜(しょう)は一味違う」と感嘆する。

ある説によると、近年の数十年、バフェットは大半の時期に平凡なパフォーマンスで、大盤に遅れたり、(もちろん、巨大な資産規模で市場平均を大きく上回るのは難しいが)一度大きく下げると巻き返し、逆転してきた。今回も例外ではなく、早々にポジション縮小、アップルの大部分を売却し、現金は数千億ドルに達している。

これに対し、多くのスーパー投資スターたちは、一時的に目立つ結果を出すかもしれないが、一つの波に耐えられないことが多い。

最も忘れがたい例は、エリスの言った話だ:
1990年から2005年までの間、あるスター・ファンドマネージャーは年平均リターン16.5%、S&P500の11.5%を大きく上回ったが、その後の3年間は-23.7%と大きく落ち込んだ。

時間加重リターンは市場をわずかに上回るように見えるが、実際には、バブル高値で大量に買い込んだ投資者は資産の縮小に苦しみ、合計36億ドルの顧客資産を失った。ファンドマネージャーとファンド会社は利益を得たが、投資家は深くロックインされた状態になった。

つまり、連続15年S&P500を上回ったとしても、全体的には損失になることも多い。特に高値で入った資金はその典型だ。

エリスが言ったのはビル・ミラーのことだろう。ミラーはリーマン・ブラザーズのバリュー・トラストを運用し、連続15年市場を上回る神話を築いたが、2008年の金融危機では大打撃を受け、その運用資産は約55-60%の下落を経験し、同期のS&P500の約37%を大きく上回る損失を被った。

その後のアマゾンやビットコインへの洞察力は卓越していたが、かつての輝きを再現できていない。

対照的に、バフェットはミラーと明確な差をつけている。市場が穏やかな時期は平凡に過ごすこともあるが、危機時にこそ本領を発揮し、長期投資の成功は、大きな下落を避けることに多く依存している。短期的に華やかに見える投資スターたちは、多くの場合、特定の市場環境下の戦略に頼りすぎており、真の全サイクルリスク管理能力に欠けている。

この二人の投資の対比は、投資の核心真理を完璧に示している:

投資の成功は、驚くべきリターンを追うことよりも、大きなミスを避けることにより依存している。

バフェットの投資人生は、荒波を乗り越えられる投資家は、最終的に、バブルで輝くスター・マネージャーを凌ぐことを証明している。

その最大の違いの一つは:

バフェットは勝率を重視する;

ミラーはオッズを重視する。

この一見小さな差の背後には、あのシンプルだが強力な数学原理——ケリー公式——が潜んでいる。

二:上記の比較の中で、ミラーはある意味で「反ケリー公式」、一方でバフェットは「強化版ケリー公式」だ。

ケリー公式はもともと、ベル研究所の科学者ジョン・ケリーが通信の信号とノイズを解決するために作ったもので、その後、最適資金配分の基礎と証明された:

f* = ((bp - q)) / b

ここでf*は最適ベット比率、bはオッズ、pは勝率、qは負け率((1-p))だ。

かつての文献では、ケリー公式は「勝率」を重視し、「オッズ」を軽視すると言われてきた。次の二つの投資機会の比較は、その誤解を示している:

1、10倍のオッズの機会で、勝つ確率が10%の場合、最適ベット比率は1%に過ぎない;

2、0.5倍のオッズ(1勝2負)で、勝率80%なら、最適ベット比率は40%に達する。

この考えに基づき、「伝統的な投資理論は高勝率の投資を好む傾向にあり、確率の把握を高めることが成功の鍵」とされる。

ケリー公式のこの「勝率重視、オッズ軽視」なアプローチでは、高収益を得るのは非常に難しい。なぜなら、確率の予測は難しく、投資は大規模なダイスロールの反復ではなく、結果の検証もできないからだ。

しかし実際には、ケリー公式は「偏り」を持たず、勝率とオッズの両方を考慮して最適な資金比率を決めている。

確率の予測は、我々はベイズの「主観的確率」を用いるしかない。

上記の二つのケースの比較は、私が議論したいテーマを浮き彫りにする:
価値投資は、比較的大きなポジションを取れるため、長期的な複利リターンを実現しやすい。

ケリー公式との関係性を見ると:
価値投資の特徴は、相対的に高い勝率(p)を追求し、適度なオッズ(b)を受け入れることだ。低価格で内在価値を下回る株を探し出し、勝率の優位性を生み出す。

ケリー公式は、勝率が高い場合、オッズがそれほど高くなくても大きなポジションを支えられることを示している。これは、価値投資の戦略と高い整合性を持つ:

典型的な価値投資は勝率65-75%、

オッズは通常0.5-2倍の範囲、

これらをケリー公式に代入した最適ポジションは、20-40%の範囲に収まることが多い。

一方、グロース投資や投機は、勝率低くオッズ高いモデルが多く、ケリーはより小さなポジションを推奨する。

なぜ価値投資は大きなポジションを支持し、長期複利に寄与するのか?
1、ドローダウンのコントロール
大きなポジションをとるには、ドローダウンリスクを抑える必要がある。
価値投資は安全マージンをもって大きな下落リスクを軽減し、市場調整時にポジションを縮小せずに済む。

2、時間的優位性
大きなポジションは、複利効果をより十分に享受できる。

例えば、期待リターンが15%と仮定すると、長期的には、戦略Aはより多くの資金を複利成長にさらし、幾何平均リターンを高める。

戦略A:高勝率・中オッズ、ケリーは40%のポジションを推奨。

戦略B:低勝率・高オッズ、ケリーは10%のポジション。

3、資金効率
資本市場では、遊休資金の機会コストは非常に高い。

価値投資による大きなポジションは、資金の効率的な利用を促進する。

三:ただし、ケリー公式の簡潔さと比較して、実際はもっと複雑だ。理論と実践には以下の重要なギャップが存在する:
1、確率推定の難しさ
投資における「勝率」は正確に推定しづらい。価値投資家は定性・定量分析を駆使し、勝率推定の精度を高めようとするが、常に主観的だ。

2、非独立事象
ケリー公式は賭けが独立していると仮定しているが、実際の株式投資は高度に相関している。市場全体のリスクは、複数の価値投資ポジションに同時影響を与える。

3、時間軸の違い
価値投資は長期間かかることが多く、資金の「ロックイン」が発生しやすく、他のチャンスを逸する可能性も。

4、心理的要因
真の課題は、価値投資家が市場の恐慌時に大きなポジションや追加買いを続けること。これは心理的に非常に難しい。

バフェットの成功は、これらの制約を創造的に克服した点にある:

・保険の浮動資金を低コストまたは負コストの資金源とし、投資可能基盤を拡大

・高勝率投資チャンスを見つける体系的手法を確立

・市場恐慌時に十分なキャッシュと精神的耐性を持ち、ポジションを増やす。

価値投資の頻繁に語られる「高勝率・高信頼性・能力圏・安全マージン」は、実はこれらの戦略を支えるものだ。資産増加は究極的には数学ゲームだからだ。

したがって、バフェットの真髄は、「強化版ケリー戦略」にほかならない。

四:次に、ミラーや他の投資家の「反ケリー公式」を見てみよう。
おおむね次のようなケースだ:

1、「反ケリー公式」まず、ミラーは暴落後、ファンドの解約に直面し、幾何平均値の致命的なダメージを修復できなかった。
これは、現金を持ち逆張りで市場に突入したバフェットと正反対だ。

2、「反ケリー公式」とは、投資家側の行動も指す。
最も典型的なのは、木頭姐(木头姐=フィンテックの著名投資家)の顧客たちだ。彼女のピーク時に大量に資金が流入したが、大きな調整局面で大きく損失した。彼女の年平均リターンは高くないが、「破壊的な富の損失」がより深刻だった。

これらのスター・ファンドマネージャーは、戦略の期待値が最大のとき((高bp値))は管理資産が少なく、期待値が低下またはマイナスに転じると、逆に資産が増加する。

これはまさに、賭博師がオッズが最も良いときに少額を賭け、オッズが悪化したときに全財産を賭けるのと同じだ。スター・ファンドだけでなく、多くの普通の投資家も無意識のうちにこの「逆ケリー」戦略((低期待値のときに大量買い、)高期待値のときに恐慌売り)を実践している。

3、「反ケリー公式」の最も危険な点は、レバレッジを掛けることだ。
ケリー公式は、最良の投資でも、資金の一部だけを使うことを前提としている。

レバレッジをかけると、大きな変動があったときに永続的な損失を招く危険性が高まる。

最近、レバレッジを掛けるファンドマネージャーの例も出ているが、その背景にはこの分野のインセンティブ構造がある。人々は毎年のリターンランキングにこだわり、ギャンブル性を刺激されている。

また、社会の評価体系は、長期の「幾何平均」ではなく、短期の「算術平均」を重視している。

4、オッズを重視する投資家にとって、「反ケリー公式」のポジションは危険だ。
例えば、あるファンドマネージャーは、より高いリターンを狙い、将来性のあるテクノロジー株を買いたいと考える。しかし、ケリー公式の計算によると、オッズが高く勝率が低い賭けは比率的に少なくなる。

リターン向上のためには、資金の効率的な使い方を追求し、複数の類似テクノロジー株を買い増すことになる。

しかし、これが問題だ。見た目には、各テクノロジー株のポジションはケリーに従っているように見えるが、実際には、これらの投資は相関関係にあり、資金配分の原則に反している。

ケリー公式の推論と適用は、基本的に「独立した投資・賭け」という仮定に基づいている。

しかし、同じ業種やビジネスモデルの株式を複数買うと、これらのリターンは相関しやすくなる。上昇と下落の動きは同期しやすく、独立した事象ではなくなる。

ケリー公式の目的は、長期的な幾何平均リターンの最大化だ。相関し、勝率低い資産に過度に投資すると、ポートフォリオの変動性は増し、不利な時には大きな下落を招く。

大きなドローダウンは、幾何平均リターンにとって致命的だ。回復に必要なリターンは高くなる。

たとえば、あるスター・ファンドは去年70%の利益を出したが、次の年に40%の損失を出すと、成果は帳消しになる。

これが、多くのスター投資マネージャーが絶好調のときに過信し、危機時に崩壊する根本原因だ。彼らはオッズ重視の戦略、見かけは巧妙だが、実は逆ケリーの落とし穴にハマっている。

5、「反ケリー公式」の時間のミスマッチ
ケリー公式は、理論上の長期最大化を前提としているが、実際の投資家やファンドマネージャーは短期のパフォーマンスや流動性制約に直面している。

下落局面では、多くの投資家はさまざまな理由(退職、教育資金、心理的耐性)で十分な長期待ちができず、市場の回復を待てない。この「短視眼」が、長期複利最大化の前提に反している。

ピーター・バーンスタインは、「変動性は長期投資者の見えない殺し屋」とし、特に引き出しフェーズでのリスクを指摘している。

彼は、「シーケンシャルリスク」の概念を提唱した。

例として、退職後の2つの投資ポートフォリオを比較:

・初期資産100万ドル、年引き出し6万5千ドル、平均年リターン7%のケース

ポートフォリオA:前15年7%、後15年7%、合計30年後に残高95万ドル

ポートフォリオB:前15年2%、後15年12%、合計30年後にほぼ枯渇

平均リターンは同じでも、最初の市場状況が資産の寿命に大きく影響する。

バーンスタインのシーケンシャルリスクは、ケリー公式と深く関連している:

ケリー戦略は、幾何平均最大化を追求するが、その最大化は、資金流動が安定していることを前提としている。

しかし、資金の引き出しやすいタイミングでは、時間の順序が極めて重要になる。

ミラーのファンドは、この「二重の反ケリー」陷阱に直面した。

・市場が下落したときに管理資金が最大になる(ケリーの資金配分原則に反する)

・投資者から大量の解約があり、時間軸の仮定に反している。

必要なときに資産を売却し、解約に対応しなければならなくなったとき、幾何平均リターンは絶望的な打撃を受ける。

一方、バフェットはバークシャー・ハサウェイの構造を巧みに利用してこの罠を避けてきた。

投資家の解約リスクを回避し、長期のケリー公式の恩恵を享受できる。

シーケンシャルリスクの教えは、真のケリー戦略は、資金の流動性と時間軸も考慮すべきだと示している。

個人投資家は、自らの資金需要を予測し、それに合わせて投資戦略を調整すべきだ。特に資金使用の時期が近づくほど、ポートフォリオの変動性を抑える工夫をし、長期的リターンを犠牲にしない範囲で調整する必要がある。

また、絶え間ないキャッシュ流入も非常に重要だ。

6、機関の制度的「反ケリー公式」
現代金融機関の組織構造やインセンティブは、システム的に「反ケリー」行動を促進している。

・ファンドマネージャーの年次評価とボーナス制度は短期的パフォーマンスを重視

・機関投資家の「業績帰属」に重点を置き、スタイルが純粋で相関性の高いポートフォリオを作る

・投資判断とリスク管理を分離し、全体的な視点に欠ける

・「相対的ベンチマーク」評価体系は群衆心理を助長し、システムリスクを高める

特に、「2 and 20」モデル(2%管理報酬+20%成功報酬)を採用するヘッジファンドは、不均衡なインセンティブを生む。

成功時に多くの利益をシェアし、失敗時のリスクは投資家に負わせるこの構造は、「反ケリー」的な過度なリスクテイクを促進しやすい。

人類の「損失回避欲求」は、上昇・下降の非対称性において非常に賢明だ。

しかし、手数料に基づくインセンティブでは、損失は恐れず、超過リターンを得ることが最重要になる。

もちろん、多くのファンドマネージャーが制度の最適化を進めている。

7、ブラックスワンに対抗する仕組みの欠如
ナシーム・タレブは、「極端な損失は、極端な利益よりもはるかに破壊的」と指摘し、尾部リスクの過小評価を批判している。

彼はしばしば「破産理論」を用いる:

例:あるファンドマネージャーが15年好調だったとしても、平均超過リターン3%の場合、

1度の40%超の損失を経験すると、67%のリターンが必要となり、元に戻すのは困難だ。

タレブは、2006~2009年のデータから、30%以上の「スター・ファンド」が一つの事象で巨大損失を出し、閉鎖した事例を示す。

従来のケリー公式の致命的な欠点は、「確率分布が既知で安定的である」という仮定にある。

しかし、タレブは、金融市場は「未知の未知」に満ちていると指摘し、それは予測も定量も不可能で、影響も巨大だと。

こうしたブラックスワン事象は、標準的なケリー公式の適用を危険にさらす。

ミラーが金融株に集中投資し、2008年危機に直面したとき、その極端尾部リスクを、従来のモデルは十分に考慮できなかった。

次第に、歴史的なデータや確率モデルだけでは、サブプライム危機の深刻さを正確に予測できず、最適資金比率はシステム的に誤ることになる。

タレブの「反脆弱」思想は、実はケリー公式の目標と一致している——長期的な生存と成長を追求する点に。

違いは、タレブが未知の分布に直面したときの保守的戦略を重視していることだ。彼は、波乱や混乱の中から利益を得る投資ポートフォリオを設計すべきだと提言している。

この視点からみると、バフェットの投資哲学は、驚くべき「反脆弱」性を持つ。

・常に十分なキャッシュを保持し、市場の混乱時に攻勢に出る。

・理解できない複雑な金融商品やビジネスモデルを避ける。

・不況時に生き残り、さらには成長できる企業を選ぶ。

・長期保有のポートフォリオを作り、取引頻度とコストを抑える。

この視点では、ブラックスワンに対処する「修正ケリー戦略」は、以下を含むべきだ:

・極端リスクへの追加バッファ(例:全ケリーではなく半ケリー使用)

・反脆弱な投資構造を築く(火薬庫を残す)

・リスクの構成に注目し、単なる期待リターンだけを見ない

・未知リスクに対して謙虚になる

タレブの洞察とケリー公式の融合は、より総合的なリスク管理枠組みをもたらす:

最適資金配分を追求しつつ、確率推定の根本的な限界を認識し、未知の事象に十分な安全マージンを設けること。

五:バフェットの「強化版ケリー公式」には、次の七つの秘密がある。

1、長期複利の追求
バフェットの核心目標は、ケリー公式と一致し、長期的な複利リターン=幾何平均値の最大化だ。

これが、すべての投資家の共通目標だ。

ただし、これを達成するのは難しい。なぜなら、短期の結果や、やや長い期間の算術平均値は、投資家の自己評価に大きな影響を与えるからだ。

バフェットは、「あなたがダメだと言われても気にしない」——本当にそう言えることこそ、彼の最も凄い点だ。

2、高勝率価値投資
バフェットは価値投資を堅持し、高勝率を追求している。これにより、ケリー公式の枠内で大きなポジションを取れ、長期的に複利を高められる。

3、「浮動資金」による資本増強
バフェットは、バークシャー・ハサウェイの保険事業と投資会社のキャッシュフローを利用し、絶えず投資資本金を増やしている。これにより、ケリー公式の固定資本の制約を超えている。

普通の人の教訓:絶え間ないキャッシュフローを持つことが、資本増強の鍵だ。

4、算術最適化の犠牲を払って、幾何平均を重視
バフェットは短期の簿価利益(算術平均)を犠牲にし、市場の低迷時に大量のキャッシュを持ち、より良い価格で買い増し、長期の幾何平均リターンを最適化している。

一心に頂点を目指す人にとって、これを実現するのは至難だ。

5、確率を用いたケリーの強化
バフェットの「安全域」の原則は、ケリーの枠内で次のように厳密に数式化できる。

内在価値以下の価格で株を買えば、勝率(p)が上がり、失敗確率(q)は下がる。

ケリー公式f* = ((bp - q)) / bにおいて、この二重の作用は最適ベット比率を大きく引き上げる。

例:1964年の米国エクソン投資
「サラ油事件」により株価が暴落した際、バフェットは40%の資金を投入し、最終的に300%のリターンを得た。安全域があったため、大きな確信を持って資金を投入できた。

「株式は会社を買うこと」こそが、ケリー公式の最も難しい部分——確率の推定に役立つ実用的枠組みだ。これにより、次のことが可能になる:

a、事業の安定性を評価(p):基本面に注力し、市場の変動に左右されず、「勝率」を分析可能に。

b、競争優位の持続性(長期リターン)を分析:持続的な競争優位を持つ企業を選び、予測の信頼性を高め、ケリーの「何度も博打」の効果を強化。

c、キャッシュフローの割引価値(b)を計算:財務と経営の質を分析し、将来のキャッシュフローを予測し、ケリーのオッズパラメータをより正確に。

この枠組みは、市場の確率をビジネス判断に変換し、ケリー公式の実用性を高める。

バフェットの安全域は静的ではなく、企業理解が深まるにつれ動的に調整される。彼は絶えず学び、評価し、確率推定をより正確にしている。これは、価値投資の継続的な学習と反復の過程だ。

6、勝率優位の集中投資
バフェットの集中投資戦略は、勝率が高い場合のケリーの拡張適用だ。勝ち越せると確信したとき、適度に集中することで、長期的な複合リターンを向上させる。

この集中戦略は、次の三つのケリーの原則に密接に基づいている:

a、能力圏と情報優位:理解している分野にのみ投資し、確率とオッズの正確な評価を追求。能力圏内では、市場よりも正確な期待値計算ができる。

b、持続的競争優位と予測の信頼性:競争優位は高いリターンをもたらすだけでなく、勝率推定の誤差を縮小する。

「堀が広くてワニがいるなら喜んで越える」——この確実性は、直接的にケリー戦略の効果を高める。

c、集中保有の合理性:マングルの言葉「広範な分散は無知の保護であり、知識の保護ではない」。
これもケリーのロジックと一致——優位性が最大のときに資金を多く投じる。

高集中のポートフォリオは、資金配分だけでなく、投資家自身の研究能力と信頼投票の表れだ。バフェットの集中ポジションは、彼の深い研究と高い信頼度の最も直接的な証明だ。

7、長期視点と平均回帰
バフェットは、市場の平均回帰の法則を利用し、勝率パラメータを体系的に最適化している。長期的なアプローチは次の四つの要素を含む:

a、平均回帰の確率的優位性:市場価格は内在価値の周りで変動する傾向があり、価格が大きく乖離したときに、回帰の確率が高まる。このため、完璧な予測をしなくても、システム的な勝率の優位性を得られる。

b、高信頼閾値:バフェットは、非常に確信度の高い場合だけ投資する。これはケリーの「確率」の不確実性に対する調整だ。

マングルは言う: 「我々は、確率がある程度高いときだけ行動する。」これにより、誤った確率推定による過剰投資のリスクを避ける。

c、動的資金配分:「他人が貪欲なときに恐れ、他人が恐れているときに貪欲に」——これは、市場の状況に応じてケリーの資金配分を動的に適用する原則だ。2008年のゴールドマン・サックスへの投資もこれ。

d、税負担とケリーの乗数:バフェットは長期保有により、税負担を遅らせる戦略を取っている。未実現利益は課税されず、これは無利子のローンのような効果を持ち、複利効果を加速させる。

彼はかつて、「私の好きな保有期間は永遠だ」と語った。これは理念だけでなく、税数学の正確な応用でもある——遅れて実現するキャピタルゲインが、ケリーの計算において複合的な優位を生む。資金は100%保持し続け、税金の一部に流出させない。

長期保有は、「良い企業の時間は友達」という考えに非常に適している。

優良企業の内在価値は時間とともに増加し続ける。長期保有は、平均回帰の恩恵だけでなく、企業価値の持続的創造の恩恵も受けられ、ケリー公式の長期適用において、正の期待値を増幅させる。

六:これらを理解した上で、普通の投資家は、これらの原則をどのように自らの投資に活かすべきか?

以下の五つのアドバイスは、「反ケリーの落とし穴」を避け、より堅実な長期投資戦略を築く助けとなる。

1、個人の「能力圏」を築き、確率優位の投資を徹底する
具体策:自分が本当に理解できる業界や企業を3-5選リストアップし、その範囲内だけに投資する。

例:医療の専門家なら、医療関連株のみに絞る。

エンジニアなら、テクノロジー企業に深く理解を持つ。

ケリー原理:確率の正確な推定が前提なので、能力圏外の投資は、真の確率を知らないまま賭けることになり、最適化から外れる。

バフェットは言う:「リスクは、自分が何をしているのかわからないことから生じる」。理解している分野だけに投資することで、真の確率優位を獲得できる。

落とし穴に注意:人気の業界、FOMO(取り残される恐怖)、過剰な自己判断への自信。

金融危機前に金融株を集中買いしたミラーの教訓——専門性を失うと、災害に遭遇しやすい。

2、「半ケリー」戦略で安全側
BTC-1.1%
FOMO-5.29%
原文表示
post-image
post-image
このページには第三者のコンテンツが含まれている場合があり、情報提供のみを目的としております(表明・保証をするものではありません)。Gateによる見解の支持や、金融・専門的な助言とみなされるべきものではありません。詳細については免責事項をご覧ください。
  • 報酬
  • コメント
  • リポスト
  • 共有
コメント
0/400
コメントなし
  • ピン