Gate 广场「创作者认证激励计划」开启:入驻广场,瓜分每月 $10,000 创作奖励!
无论你是广场内容达人,还是来自其他平台的优质创作者,只要积极创作,就有机会赢取豪华代币奖池、Gate 精美周边、流量曝光等超 $10,000+ 丰厚奖励!
参与资格:
满足以下任一条件即可报名👇
1️⃣ 其他平台已认证创作者
2️⃣ 单一平台粉丝 ≥ 1000(不可多平台叠加)
3️⃣ Gate 广场内符合粉丝与互动条件的认证创作者
立即填写表单报名 👉 https://www.gate.com/questionnaire/7159
✍️ 丰厚创作奖励等你拿:
🎁 奖励一:新入驻创作者专属 $5,000 奖池
成功入驻即可获认证徽章。
首月发首帖(≥ 50 字或图文帖)即可得 $50 仓位体验券(限前100名)。
🎁 奖励二:专属创作者月度奖池 $1,500 USDT
每月发 ≥ 30 篇原创优质内容,根据发帖量、活跃天数、互动量、内容质量综合评分瓜分奖励。
🎁 奖励三:连续活跃创作福利
连续 3 个月活跃(每月 ≥ 30 篇内容)可获 Gate 精美周边礼包!
🎁 奖励四:专属推广名额
认证创作者每月可优先获得 1 次官方项目合作推广机会。
🎁 奖励五:Gate 广场四千万级流量曝光
【推荐关注】资源位、“优质认证创作者榜”展示、每周精选内容推荐及额外精选帖激励,多重曝光助你轻
港大阿里「视觉AI任意门」,一键向场景中无缝传送物体
来源:量子位
点两下鼠标,就能把物体无缝「传送」到照片场景中,光线角度和透视也能自动适应。
阿里和港大的这个AI版「任意门」,实现了零样本的图像嵌入。
有了它,网购衣服也可以直接看上身效果了。
AnyDoor一次能够传送多个物体。
零样本生成逼真效果
相对于已有的类似模型,AnyDoor具有零样本操作能力,无需针对具体物品调整模型。
实际上,其他的Reference类模型只能做到保持语义一致性。
通俗地说,如果要传送的物体是一只猫,其他模型只能保证结果中也有一只猫,但相似度无法保证。
而对于已有图像中物体的移动、换位,甚至改变姿态,AnyDoor也能出色完成。
工作原理
不过在将包含目标物体的图像送入提取器之前,AnyDoor首先会对其进行背景消除。
然后,AnyDoor会进行自监督式的物体提取并转换成token。
这一步使用的编码器是以目前最好的自监督模型DINO-V2为基础设计的。
为了适应角度和光线的变化,除了提取物品的整体特征,还需要额外提取细节信息。
这一步中,为了避免过度约束,团队设计了一种用高频图表示特征信息的方式。
同时,AnyDoor利用Hadamard对图像中的RGB色彩信息进行提取。
结合这些信息和过滤边缘信息的遮罩,得到了只含高频细节的HF-Map。
利用获取到的token,AnyDoor通过文生图模型对图像进行合成。
具体来说,AnyDoor使用的是带有ControlNet的Stable Diffusion。
AnyDoor的工作流程大致就是这样。而在训练方面,也有一些特殊的策略。
尽管AnyDoor针对的是静态图像,但有一部分用于训练的数据是从视频当中提取出来的。
将物体与背景分离后标注配对,就形成了AnyDoor的训练数据。
不过虽然视频数据有利于学习,但还存在质量问题需要解决。
于是团队设计了自适应时间步采样策略,在不同时刻分别采集变化和细节信息。
通过消融实验结果可以看出,随着这些策略的加入,CLIP和DINO评分均逐渐升高。
团队简介
论文的第一作者是香港大学博士生陈汐(Xi Chen),他曾经是阿里巴巴集团算法工程师。
陈汐的导师Hengshuang Zhao是本文的通讯作者,研究领域包括机器视觉、机器学习等。
此外,阿里方面还有来自达摩院、菜鸟集团的研究人员也参与了这一项目。
论文地址: